EMD经验模态分解

美国工程院士黄锷博士于1998年提出的一种信号分析方法:重点是黄博士的具有创新性的经验模态分解(Empirical Mode Decomposition)即EMD法,也叫Hilbert-Huang Transform。它是一种自适应的数据处理或挖掘方法,非常适合非线性,非平稳时间序列的处理,本质上是对数据序列或信号的平稳化处理。

1. 关于时间平稳性的理解:

所谓时间序列的平稳性,一般指宽平稳,即时间序列的均值和方差为与时间无关的常数,其协方差与时间间隔有关而也与时间无关。简单地说,就是一个平稳的时间序列指的是:遥想未来所能获得的样本时间序列,我们能断定其均值、方差、协方差必定与眼下已获得的样本时间序列等同。

反之,如果样本时间序列的本质特征只存在于所发生的当期,并不会延续到未来,亦即样本时间序列的均值、方差、协方差非常数,则这样一个时间序列不足以昭示未来,我们便称这样的样本时间序列是非平稳的。

形象地理解,平稳性就是要求经由样本时间序列所得到的拟合曲线在未来的一段期间内仍能顺着现有的形态“惯性”地延续下去;如果数据非平稳,则说明样本拟合曲线的形态不具有“惯性”延续的特点,也就是基于未来将要获得的样本时间序列所拟合出来的曲线将迥异于当前的样本拟合曲线。

事实上,世界上几乎不存在理想的“平稳”时间序列。欧阳首承教授曾指出:“平稳序列性消除了小概率事件”。即在欧阳教授的溃变论看来,EMD这一方法也是有问题的。但是,该方法确实扩展了平稳化这一传统思想的应用范围,即扩展到了对任何类型的时间序列的处理,也是了不起的新进展。

2. EMD方法

EMD 方法在理论上可以应用于任何类型的时间序列(信号)的分解,因而在处理非平稳及非线性数据上,比之前的平稳化方法更具有明显的优势。所以,EMD方法一经提出就在不同的工程领域得到了迅速有效的应用,例如用在海洋、大气、天体观测资料与地球物理记录分析等方面。

该方法的关键是它能使复杂信号分解为有限个本征模函数(Intrinsic Mode Function,简称IMF),所分解出来的各IMF分量包含了原信号的不同时间尺度的局部特征信号。EMD分解方法是基于以下假设条件:

  1. 数据至少有两个极值,一个最大值和一个最小值;

  2. 数据的局部时域特性是由极值点间的时间尺度唯一确定;

  3. 如果数据没有极值点但有拐点,则可以通过对数据微分一次或多次求得极值,然后再通过积分来获得分解结果。

经验模态分解的基本思想:将一个频率不规则的波化为多个单一频率的波+残波的形式。原波形 = ∑ IMFs + 余波。

这种方法的本质是通过数据的特征时间尺度来获得本征波动模式,然后分解数据。这种分解过程可以形象地称之为“筛选(sifting)”过程:

  1. 找出原数据序列X(t)所有的极大值点并用三次样条插值函数拟合形成原数据的上包络线;
  2. 同样,找出所有的极小值点,并将所有的极小值点通过三次样条插值函数拟合形成数据的下包络线,上包络线和下包络线的均值记作ml(其实,有学者将平均值改用中位值,可能更合理,因为是非平稳时间序列),将原数据序列X(t)减去该平均包络ml,得到一个新的数据序列hl:X(t)-ml=hl,即疑似IMF线;
  3. 若满足下面两个条件则变为正式IMF;
    1. 均值线(总得有很多数构成吧)的平均值趋近于0(一般和0做差<0.1)
    2. 原始信号的极值点个数(包括极大值点个数+极小值点个数)和原始信号同y=0的交点个数之差不能大于1(小于等于1)
  4. 由原数据减去包络平均后的新数据,若还存在负的局部极大值和正的局部极小值,说明这还不是一个本征模函数,需要继续进行“筛选”。

EMD

img

3. 简析

img

“Huang的算法几乎是Hilbert使用的前提条件,Hilbert Transform则是Hilbert-Huang算法的精要所在”(注意句中出现了“几乎”一词)。比如我们造了一款叫做“榔头”的手机,“榔头”手机对用户的使用提出了下列要求:1.晚上不能使用。2.下雨天不能打。3.室内不能打。4.室外的偏远郊区也不能打。实际上,Hilbert正是这样一款“榔头”手机,它对用户的使用提出了近乎苛刻的要求。Hilbert变换算法要求输入信号只能是线性稳态的。请注意这里是两个词“线性”“稳态”。无论是在自然界还是在人类社会中,绝大部分的信号要么是“线性非稳态”,要么是“非线性稳态”,要么干脆是“非线性非稳态”。我们关心的重点——EEG信号正是这样一类“非线性非稳态”的信号。这也就导致了绝大部分信号不能够愉快的进入Hilbert的“碗里”来。此时,Huang的EMD算法起到了这样的作用,它能够将所有的时域信号转化为“线性稳态”,解了Hilbert算法的软肋。

经验模态分解依据数据自身的时间尺度特征来进行信号分解,即局部平稳化,而无须预先设定任何基函数。这一点与建立在先验性假设的谐波基函数(或基频)和小波基函数上的傅里叶分解与小波分解方法具有本质性的差别。这与本人使用的浮动频率法有共同之处,此为共鸣之一。翁文波曾指出傅立叶的基频假设在数据有限的情况下,信号序列(数据)中特性频率与基频的谐和频率不一致,就会导致信号的严重失真,因此而提出了浮动频率法。黄博士似乎也看到了这一点,这从他的命名为“经验模态分解”就可窥知,即”Empirical”这个词与“transzendental(先验的)”相对,等于强调了与先验的傅立叶和小波分解法的不同。翁和黄都从此处触发即出发而提出了各自的创新概念和方法,有异曲同工之妙。

4. 案例:

  1. 孙娴, 林振山. 经验模态分解下中国气温变化趋势的区域特征[J]. 地理学报, 2007.

    通过余波分析大尺度的气温变化趋势

    image-20201012164546499

image-20201012164512541

  1. 王坚, 张继贤, 刘正军, et al. High Resolution Image Merging Based on EMD基于经验模态分解的高分辨率影像融合[J]. 遥感学报, 2007, 11(001):55-61.

    对二维EMD进行了多尺度分解和重构算法

  2. 陈国鼎, 荆海晓, 李小宝,等. 基于经验模态分解与传统水文分析法的降雨序列研究[J]. 水利水电技术, 2018, 49(11):8-14.

    EMD方法可作为传统水文分析方法在趋势分析及周期成分提取时的有效补充。

5. 应用

将EMD算法应用于PM2.5气象站点:

PyEMD(残差不对劲):

image-20201012171633373

Matlab:

image-20201012171731155 image-20201012171804026

参考: